

A STUDY ON THE BACTERIOLOGICAL PROFILE OF URINARY TRACT INFECTION AND ANTIBIOTICS SENSITIVITY PATTERN IN A TERTIARY CARE HOSPITAL, JAMNAGAR, GUJARAT (INDIA)

Dr. Saurabh Chhotalal Gamit

MD Microbiology, Senior Resident, Department of Microbiology, M.P.Shah Govt. Medical College, Jamnagar.

Dr. Krunal Mehta

MD Microbiology, Assistant professor, Department of Microbiology, M.P.Shah Govt. Medical College, Jamnagar.

Dr. Summaiya Mullan

MD Microbiology, Professor and Head, Department of Microbiology, M.P.Shah Govt. Medical College, Jamnagar.

ABSTRACT Urinary tract infection (UTI) is defined as a disease caused by microbial invasion of the urinary tract that extends from the renal cortex of kidney to the urethral meatus. Urinary tract infections (UTIs) are among most common bacterial infections that need medical care; accounting for second most common infection after respiratory tract infections in community. Whereas in hospitals, they are the most common hospital acquired infections (HAIs) accounting for 35% of total HAIs. Approximately 1 in 3 women will require antimicrobial treatment for a Urinary Tract Infection (UTI) before age 24, and 50% of women will have a UTI during their lifetime. *Escherichia coli* are the most common cause of UTIs. Clean-Catch midstream urine was collected of the patients with history of fever, abdominal pain, dysuria, urgency and frequency. During study 343 urine samples received in microbiology laboratory for culture were processed according to standard protocol. Isolates were identified by conventional phenotypic methods and antibiotic sensitivity determined by standard Kirby Bauer disc diffusion method and follow Clinical and Laboratory Standards Institute (CLSI) guidelines. In this study 86 (25.07%) patients out of 343 were shown to be urine culture positive out of them 54 (62.79%) females and 32 (37.21%) males. The most isolated bacterium was *E. coli* with frequency rate of 54 (62.79%). The other bacteria were *Klebsiella* spp. 20(23.26%), *Pseudomonas* spp. 07 (8.14%), and other gram negative bacteria 05 (5.81%). It is concluded that Gram-negative bacilli were responsible for UTI infections in our patients. The most common isolated bacteria from urinary tract infections were *E. coli* followed by *Klebsiella pneumoniae*. The most effective antimicrobial agents were Imipenem and Piperacillin-tazobactam and the least effective one was cephalixin.

KEYWORDS

Female, Urinary Tract Infection, Antimicrobial susceptibility, *E. coli*

ARTICLE HISTORY

Received : 16 March 2017

Accepted : 24 May 2017

Published : 05 October 2017

*Corresponding Author Dr. Krunal Mehta

MD Microbiology, Assistant professor, Department of Microbiology, M.P.Shah Govt. Medical College, Jamnagar. dr.saurabh999gamiy@gmail.com

INTRODUCTION:

Urinary Tract Infections (UTIs) have been proven to be the most encountered bacterial infection in humans [1, 2], affecting all age groups and gender in both the community and hospital settings [3, 4]. About 50% of all females will experience at least an episode of UTI during their lifetime [5]. Asymptomatic bacteriuria and urinary tract infection (UTI) are common among adult men and women; although the incidence is higher among women due to their anatomy [6, 7]. They also have a higher prevalence among women during pregnancy and in very sexually active females [8]. Asymptomatic bacteriuria denotes significant bacteriuria (> 105 CFU/mL of urine) without clinical symptoms of urinary tract infections (such as frequent urination, painful urination or fever) or other abnormal findings. The bacteriuria should not be due to contamination from urine sample collection.

UTI is an infection that affects any part of the urinary tract from the bladder to the kidney. It is not classified as a sexually transmitted infection [9] although sexual activity is known to be a risk factor [10]. Symptoms include frequent and/or painful urination, a feeling to urinate despite having an empty bladder, fever and flank pain. At times, the urine may contain pus and/or appear bloody. UTI is a risk factor for pyelonephritis, preterm delivery and miscarriages among pregnant women, and is associated with impaired renal function and end-stage renal disease among pediatric patients [11].

Antibiotic resistance in the treatment of UTI and other bacterial infections constitute a major public health problem especially in the developing countries. Irrational and indiscriminate use of antibiotics as well as fake and substandard drugs, including antibiotics is common in these countries [12, 13]. In view of these and attendant tendency for changes in bacteriological profile, it is worthwhile that the degree of susceptibility and resistance of these uropathogens to various antibiotics be known to clinicians for effective treatment of infections they cause and to avoid antibiotic miss-use. This study is aimed at determining the type and level of drug susceptibility of bacterial uropathogens isolated from female patients with symptomatic UTI and attending a tertiary health care institution in south-east Nigeria. This will help reduce irrational use of antibiotics and development of resistance.

MATERIAL AND METHOD:

This study was carried out at tertiary care hospital, Jamnagar (Gujarat) between from 1st January to 31st March-2019. Total 343 patients with clinical manifestation of UTI were included in the study.

Clean catch mid-stream urine was collected from each patient in sterile screw capped container which were distributed to patients. Each specimen was appropriately labelled, transported to the microbiology laboratory of Shri M. P. Shah Medical College, Jamnagar as early as possible.

After receiving samples to laboratory, Mac Conkey agar, Blood agar were prepared per their manufacturing specification and sterilized in the autoclave by heating at 121°C for 15 minutes. The sterilized media were poured aseptically into petri dish and allowed to solidify. Each urine sample inoculated on it by using sterile calibrated loop and then agar plate incubated at 37°C for 24hours in incubator with proper labelling. On next day, identification of bacterial isolates was done on basis of their culture, gram staining and biochemical characteristics.

The antibiotics susceptibility of pure culture was performed on Muller Hinton agar using the standard Kirby bauer disk diffusion method. Standard inoculum suspension prepared of each isolate into peptone water in test tube by adjusting to match 0.5 Mcfarland turbidity standard which was approx. 1.5×10^6 CFU/ml bacterial suspension. This bacterial suspension was lawn culture on Muller Hinton plates by using sterile wooden cotton swab then allow to dry for 5 minutes. The antibiotics disks Ampicillin-Sulbactam(AS), Cephalexin(PR) Norfloxacin(NX), Ceftriazone(CI), Ciprofloxacin(RC), Tetracycline(TE), Gatifloxacin(GF), Nitrofurantoin(FD), Chloramphenicol(CH), Piperacillin-tazobactam(PT) & Imipenem(IPM) were placed aseptically on agar plate, then Muller Hinton plates incubated at 37°C for 24hours in incubator with proper labelling. Next day the zone of inhibition measured of all antibiotics and recorded in millimetre. Susceptibility/Resistance was interpreted according to clinical and laboratory standard institute (CLSI) guidelines.^[14]

RESULT AND ANALYSIS:

This study was carried out at tertiary care hospital, Jamnagar (Gujarat) between from 1st January to 31st March-2019. Total 343 patient's urine samples with clinical manifestation of UTI were received. Out of these, only 86(25.07%) samples found positive microorganism growth. Out of them 54(62.79%) samples were from female patients and 32(37.21%) samples were from male patients. (Table-01)

This study show that maximum cases of UTIs were found in old age groups which were 39 (45.35%) (Table-02). Out of 86 isolated organisms, 54 (62.79%) were E. coli, 20 (23.26%) were Klebsiella pneumoniae, and 07 (8.14%) were Pseudomonas aeruginosa (Table-03).

Table-01

Total	Positive	Male	Female
343	86 (25.07%)	32 (37.21%)	54 (62.79%)

Table-02: Age group wise distribution of UTIs positive cases

Age groups (Years)	Total (n=86)	Male(n=32)	Female(n=54)
< 10	09 (10.46%)	02	07
11-30	20 (23.26%)	09	11
31-50	18 (20.93%)	06	12
51-80	39 (45.35%)	15	24

Table-03: Frequency of bacterial agent isolated from urine samples

Organism	No. of isolation (%) (n=86)
Escherichia coli	54 (62.79%)
Klebsiella pneumoniae	20 (23.26%)
Pseudomonas aeruginosa	07 (8.14%)
Others (Acinetobacter & Proteus)	05 (5.81%)

Table-04: Antibiotics sensitivity pattern of isolated organisms

Antibiotics	Sensitivity (%) (n=86)
Imipenem (IPM)	82 (95.35%)
Piperacillin-tazobactam (PT)	79 (91.86%)
Chloramphenicol (CH)	61 (70.93%)
Nitrofurantoin (FD)	51 (59.30%)
Gatifloxacin (GF)	32 (37.20%)
Tetracycline (TE)	28 (32.56%)
Ciprofloxacin (RC)	14 (16.28%)
Ceftriazone (CI)	11 (12.79%)
Norfloxacin (NX)	10 (11.63%)

Cephalexin (PR)	09 (10.47%)
Ampicillin-Sulbactam (AS)	08 (09.30%)

DISCUSSION:

This study revealed that out of 343 UTIs patients 25.07% found positive bacterial growth which much similar to Angoti et al. [15] and Solanki et al. [16] study. Similar finding regarding the sex distribution of positive urine samples have reported in a study by Angoti et al. [15], Solanki et al. [16] and Bency et al. [18] (Table-05).

In our study, E. coli (62.79%) was predominant organism isolated which were similar to study of Angoti et al. [15] and Solanki et al. [16]. The present study also revealed that maximum positivity found in old age group which can compared with Bency et al. [18] study (Table-05).

Table-05: Comparison of other studies

Different Studies	Positivity (%)	Female	E.coli	50-80 Years
Angoti et al. [15]	24.96%	62.47%	55.38%	-
Solanki et al. [16]	21.68%	63.87%	65.97%	-
Singh VP et al. [17]	33.30%	45.40%	33.30%	-
Bency et al. [18]	-	63.30%	74.26%	59.78%
Present study	25.07%)	62.79%	62.79%	45.34%

CONCLUSION:

The study revealed that urinary tract infection is much more common in female gender due to their differing anatomy. E. coli is the predominant isolated pathogen in UTIs patients and study shows that bacterial isolates were resistant to the commonly prescribed antimicrobial drugs. The antimicrobial resistance pattern suggests that Nitrofurantoin(FD), Chloramphenicol(CH), Piperacillin-tazobactam(PT) & Imipenem(IPM) are more appropriate to treat the UTIs than routinely prescribed antimicrobial drugs like Ampicillin-Sulbactam(AS), Cephalexin(PR) Norfloxacin(NX), Ceftriazone(CI), Ciprofloxacin(RC), Tetracycline(TE), Gatifloxacin(GF). Appropriate measure may help to reduce UTIs, we recommend routine UTIs screening of high risk group like female gender, pregnancy, hospitalised patients, indwelling catheter and married individual to prevention of UTI at lower cost.

ACKNOWLEDGMENT:

The author thanks to their colleagues, the faculty, the laboratory staff of the microbiology department for provisional reagents and the technical advice. They are grateful for the cooperation of those patients who participated in this study.

REFERENCES:

- Demilie T, Beyene G., Melaku S., Tsegaye W. Urinary bacterial profile and antibiotic susceptibility pattern among pregnant women in north west ethiopia. *Ethiop. J. Health Sci.* 2012;22(2):121–128. [PMC free article] [PubMed] [Google Scholar]
- Parveen S.S., Reddy S.V., Rama Rao M.V., Janardhan Rao R. Uropathogens and their drug susceptibility patterns among pregnant women in a teaching hospital. *Ann Biol Res.* 2011;2(5):516–521. [Google Scholar]
- Ahmed E., Shahid H.M., Ikhlaque S.S., Ejaz M. Urinary tract bacterial pathogens and their sensitivity pattern. *J. Rawalpindi Med. Coll. (JRMC)* 2014;18(2):263–266. [Google Scholar]
- Omigie O., Okoroh L., Umolu P., Ikuuh G. Increasing resistance to quinolones: A four-year prospective study of urinary tract infection pathogens. *Int. J. Gen. Med.* 2009;2:171–175. [PMC free article] [PubMed] [Google Scholar]
- Al-Badr A., Al-Shaikh G. Recurrent urinary tract infections management in women: A review. *Sultan Qaboos Univ. Med. J.* 2013;13(3):359–367. doi: 10.12816/0003256. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Rowe T. A., Juthani-Mehta M. Urinary tract infection in older adults. *Aging Health.* 2013. Available at: <http://doi.org/10.2217/ahe.13.38> . [PMC free article] [PubMed] [CrossRef]
- Vasudevan R. Emergence of UTI causing *Staphylococcus aureus* as a superbug: Has the pathogen reduced the options of antimicrobial agents for treatment. *EC Microbiol.* 2015;1:88–112. [Google Scholar]

8) . . Verstraelen H., Verhelst R., Vaneechoutte M., Temmerman M. The epidemiology of bacterial vaginosis in relation to sexual behaviour. *BMC Infect. Dis.* 2010;10:81. doi: 10.1186/1471-2334-10-81. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9) . . Flores-Mireles A.L., Walker J.N., Caparon M., Hultgren S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. *Nat. Rev. Microbiol.* 2015;13(5):269–284. doi: 10.1038/nrmicro3432. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10). Lee-Ellen C. Copstead-Kirkhorn, Jacquelyn L. Banasik. *Study Guide for Pathophysiology*. (5 ed.). Elsevier Health Sciences. 2013. p. 272. [Google Scholar]

11). Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. *Am. J. Med.* 2002;113(113 Suppl. 1A:5S–13S. doi: 10.1016/S0002-9343(02)01054-9. [PubMed] [CrossRef] [Google Scholar]

12). Abubakar E M. Antimicrobial Susceptibility pattern of pathogenic bacteria causing urinary tract infection at specialist hospital Yola Adamawa state Nigeria. *J. Clin Med Res.* 2009;1(1):001–008. [Google Scholar]

13). Wilson J.M., Fenoff R. The health and economic effects of counterfeit pharmaceuticals in africa. anti-counterfeiting and product protection program backgrounder series. global edge business review. 2011. Available at: http://royfenoff.com/Global_Edge_Business_Review_Article.pdf.

14). CLSI. Performance standards for antimicrobial disk tests; Approved Standards. 25th Edition. Clinical and Laboratory Standards Institute (CLSI) Document M2-A9. Wayne. 2016;26(1) [Google Scholar]

15). Angoti, G., Goudarzi, H., Hajizadeh, M., & Tabatabaii, Z. (2016). Bacteria isolated from urinary tract infection among patients and determination of the antibiotic susceptibility patterns of the gram negative bacteria in iran. *Novelty in Biomrdicine*, 4(1), 1-4.

16). Solanki Manoj, Surani Chandani, Mehta Krunal, Mullan Summaiya, Bacteria Isolated From Urinary Tract Infection among Patients and Determination of the Antibiotic Susceptibility Patterns of the Gram Negative Bacteria in Tertiary Care Hospital. *Saudi Journal of Pathology and Microbiology*, 2018; 3(12): 488- 49

17). Singh VP, Mehta A. Bacteriological profile of urinary tract infections at a tertiary care hospital in Western Uttar Pradesh, India. *Int J Res Med Sci* 2017;5:2126-9.

18). Bency JAT, Priyanka R, Jose P. A study on the bacteriological profile of urinary tract infection in adults and their antibiotic sensitivity pattern in a tertiary care hospital in central Kerala, India. *Int J Res Med Sci* 2017;5:666-9.