

HUMAN PAPILLOMA VIRUS -6,16 IN THE PATHOGENESIS OF ORAL LICHEN PLANUS -A SYSTEMATIC REVIEW

Subashini.V	Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospital, Chennai 600077, India
Pratibha Ramani	Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospital, Chennai 600077, India
Anuja . N	Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospital, Chennai 600077, India
Herald J Sherlin	Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospital, Chennai 600077, India
Abhilasha R	Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospital, Chennai 600077, India
Giffrina Jayaraj	Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospital, Chennai 600077, India

ABSTRACT **BACKGROUND:** Oral lichen planus (OLP) is a chronic inflammatory mucocutaneous disease . Human papilloma virus(HPV) - 6,16 is seem to have significant relation with oral lichen planus.The Systematic review is to assess the presence of HPV-6,16 in the pathogenesis role of Oral lichen planus. Published literature on HPV-6,16 in Oral lichen planus from 1990–2016, were searched through PUBMED , MEDLINE and Google , performed. Articles were also selected by a hand search from the relevant journals .Finally ,a total of six relevant articles were reviewed. In our review , studies on HPV -16 in Oral lichen planus showed 17% positivity and studies on HPV -6 in Oral lichen planus showed 8% positivity . Results showed that HPV-6,16 do not have role in the pathogenesis of oral lichen planus. We can conclude from our review that Human papilloma virus - 6,16 cannot be detected in Oral lichen planus cases.

KEYWORDS

Assessment; Oral lichen planus ,Human papilloma virus -6,16, pathogenesis

ARTICLE HISTORY

Submitted : 08 December 2017 || Accepted : 24 February 2018 || Published : 05 July 2018

*Corresponding Author Pratibha Ramani

Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospital, Chennai 600077, India

INTRODUCTION

Oral lichen planus(OLP) is common chronic inflammatory disease affecting 0.5 to 2.2 % of general population. Oral lichen planus commonly affects middle aged and has female predilection. The lesions appears as white plaque like striations,papular or erosive or atrophic or reticular.(1)

The etiology and pathogenesis of OLP are unknown though several molecular hypotheses have been presented. The etiology of OLP involves the degeneration of the epithelial basal cell layer, induced by cell-mediated immunologic reactions[2]

Histologically, oral lichen planus lesions shows hyperkeratosis, liquefaction of basal layer ,infiltration of lymphocytes in epithelium connective tissue interface. [3,4]. Unknown antigen may play a role for lymphocyte infiltration in this disease. It is also suggested that in OLP apoptosis is triggered by autotoxic CD8+T cell[5]. Keratinocyte antigen expression might be altered by exogenous agents. In viral infections ,virus acts as cytoplasmic antigen or induce the expression of host cell proteins,which causes altered host cell protein profile. The response of these specific CD8+T cells is similar to what occurs during a viral infection where a virus can act as a cytoplasmic antigen or induce the expression of host cell proteins, resulting in an altered host cell protein profile [6].

Human papilloma virus(HPV) are mostly associated with proliferative epithelial lesions due to their affinity towards squamous epithelial

cells. HPV 16 and 18 by expression of E6 and E7 genes compromise physiological cell cycle control by binding of the related oncoproteins to the tumor suppressor gene products p53 and pRB [7,8].It is also found that HPV infection based on keratinization of tissue,that is keratinized tissue is more resistant to HPV infection[9].

Hence it has been suggested that Human papilloma virus(HPV) might play role in pathogenesis of Oral lichen planus[10]. HPV-16, HPV-18 and HPV-31, have an association with Oral lichen planus[11]. There fore this systematic review aimed to analyse Human papilloma virus (HPV)-6,16 in the pathogenesis of Oral lichen planus.

MATERIALS AND METHODS

SEARCH STRATEGY FOR IDENTIFICATION OF STUDIES:

The search strategy was in accordance with the Cochrane guidelines for systematic reviews .Articles relevant to the search strategy were identified from search data bases of PUBMED and MEDLINE till the year 2016.Due to limitation of number of articles on Human papilloma virus and Oral lichen planus ,no timeline was included for the search.The article search included only those from the English literature.An internet search was also done to obtain the relevant articles of our interest.The title of the articles and abstracts were reviewed.The full text of selected articles were retrieved and further analysed.

SEARCH METHODOLOGY:

The search methodology applied in PUBMED was using the following

keywords:

Search((((((HPV6)OR Human papilloma virus 6))AND ((HPV 16) OR Human papilloma virus -16))) AND ((Pathogenesis)OR Pathological process))) AND (((((((((((((oral lichen planus) OR oral lichen ruber planus) OR oral mucosal lichen planus) OR oral autoimmune disease) OR oral squamo papulous disorder) OR oral papulosquamous disorder)) OR Oral mucocutaneous disease) OR Oral inflammatory disease)) OR Oral potentially malignant lesion) OR Oral precancerous lesion))OR Oral premalignant lesion)) OR Oral white lesion)) OR Oral potentially malignant condition)) OR Oral precancerous condition))OR Oral premalignant condition)

In addition ,an internet search was also done using the key words “Oral lichen planus” and “Human papilloma virus-6” and “ Human papilloma virus -16”

SELECTION OF STUDIES :

INCLUSION CRITERIA:

- Original studies on Human papilloma virus-6,16 in Oral lichen Planus.
- Ex vivo studies
- Studies were the samples are obtained from the patients manifesting the disease in active state.
- Studies done on tissue samples
- Studies in English language were included

EXCLUSION CRITERIA:

- Studies in animals models were excluded
- Studies done with oral scrapings

DATA EXTRACTION AND OUTCOMES

Once the articles to be reviewed were finalized, data was extracted from each article, tabulated and was verified and interpreted (Fig-1) The outcomes assessed in this review examined and analysed the role of Human papilloma virus-6,16 in the pathogenesis of Oral lichen planus.

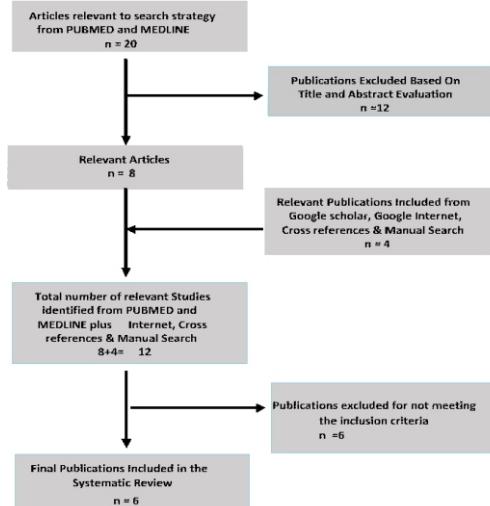


FIG.1. SEARCH FLOW CHART

RESULTS

Methods of Review:

The selection and exclusion of the reviewed studies are summarised in figure .1. The search strategy identified six studies that evaluate Human papilloma virus -6,16 in the pathogenesis of Oral lichen planus The description of the included studies is shown in table 1 and that of the excluded studies in table 2.

Included studies:

Out of the six included studies(21,22,23,24,25,26&27),detection of Human papilloma virus -16 was evaluated in all 6 studies and Human papilloma virus -6 was evaluated in 4 studies(21,22,23,25). Due to heterogeneity of the reviewed studies, a meta-analysis could not be performed. Yet a systematic review was conducted and the collected data were tabulated and analyzed.

TABLE 1.DESCRIPTION OF INCLUDED STUDIES

S N O	AUTHO R	YE AR	SAMP LE SIZE	CONDIT IONS ASSESS ED FOR HPV	SUBTYP ES ASSESS ED FOR HPV	METHOD OF HPV DETECTI ON	STATIS TIC AL ANALYS IS	HPV's DETECT ED	RESULTS			LIMITAT IONS
									HPV-6,16 subtypes	HPV others	p value	
1	Jontell M	1990	20- OLPe	HPV- 6,11,16,18	Southern blot Hybridiza tion and PCR	-	HPV- 6,11,16, 18	PCR,HP PCR+HP V-6 in 5 OLPe cases SBH+HPV- 16 in 3 OLPe cases	PCR+HP V-6 in 5 OLPe cases SBH+HPV- 16 in 3 OLPe cases	-	No statistical analysis done	
2	Christian e Ostwald	2002	112- OSCC, 72- OLPe OL12	HPV- 6,11,16,18	PCR/Sout ern Blot Hybridiza tion	Chi- square test	HPV- 16,18,6/ 11	HPV-16 positiv y in 16 OLPe OSCC, 2 Chelitis, 5,65- OLPe	HPV-16 positiv y in 16 OLPe OSCC, 2 Chelitis, 5,65- OLPe	P value less than 0.005 (signifi cant)	Sample sizes vary between conditions	
3	Giuseppina Campisi	2004	71-OLPe 68-OL	HPV-6,16,18 31,33	PCR and sequencing analysis	Student t Pearson chi Square test	HPV-16, 18,31,33	HPV-16 in 2 OLPe HPV-6 in 1 OLPe	HPV-18 Positive in 9-OLPe OLPe+HPV- 31 in 1 OL	P=0.0 05 (signifi cant)	Failed to demonstr ate relation ship between HPV infection and any specific clinical variant of OL and OLPe	
4	Pratap orn Ariarach karan	2013	37-OLPe	OLPe	HPV- 16	PCR	Phylog enetic tree cooccur rence	HPV- 16,33 &6,11	HPV-16 in three OLPe cases,HPV- 6,11 2 OLPe cases HPV- 11 in 2 OLPe cases	-	Results were not config ured well	
5	Chetan A.pol.	2015	60(30- 30-OLPe)	Oral lichen planus	HPV- 16	Immunohist ochemistry	Fisher's exact test	HPV- 16	HPV-16 positiv y in 21/30 OLPe cases	P=0.0001(sig nificant)	HPV evalua tion done only by IHC	
6	Mahnaz Sahebj mee	2015	40-OLPe and 40- normal saliva and tissue)	HPV- 16,18	PCR	Chi square and Fisher's exact test	HPV 16,18	HPV- 16 &8/40 OLPe tissue &3 saliv a samples &5/40 healthy saliva positive for HPV-16	P=0.0367(Sig nificant)	Done in specifi c popula tion Not genera lized.		

TABLE 2.DESCRIPTION OF EXCLUDED STUDIES

	CITATION	REASONS FOR EXCLUSION
1	Paula Andrea Gabrielli Fregonesi, Debora Barreto Teresa(2003)	Study was not done in oral lichen planus
2	F. Elamin, H. Steingrimsdottir, S. Wanakulasuriya(1998)	Study was done in malignant lesions
3	Syrian SM, Syrjicn KJ(1988)	Study was done in oral squamous cell carcinoma
4	Stina M. Syrjinen, Kari J. Syrjinen (1986)	Study was done in oral squamous cell carcinoma
5	Mravak-Stipetić M1, Sabol I (2013)	Study was done in oral scrapings
6.	Jenice D'Costa a , Dhananjaya Saranatha (1998)	Study was done in OSCC

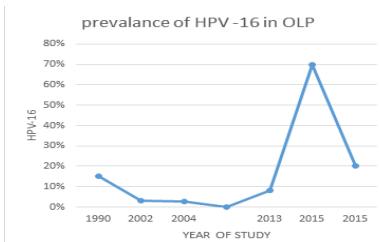


Figure 2

Table:3

S.NO	AUTHOR	YEAR	HPV-16 positive cases
1	Jontell M	1990	(3)15%
2	Christiane Ostwald	2002	(2)3.10%
3	Giuseppina Campisi	2004	(2)2.80%
4	Pratanporn Arirachakaran	2013	(3)8.10%
5	Chetan A.Pol	2015	(21)70%
6	Mahnaz Sahebjamiee	2015	(8)20%

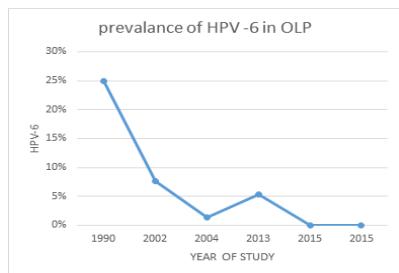


Figure 3

Table:4

S.NO	AUTHOR	YEAR	HPV-6 positive cases
1	Jontell M	1990	(5)25%
2	Christiane Ostwald	2002	(5)7.70%
3	Giuseppina Campisi	2004	(1)1.40%
4	Pratanporn Arirachakaran	2013	(2)5.40%

Discussion

Oral Lichen planus is a chronic inflammatory disease that affects the mucous membrane. Oral lichen planus (OLP), presents frequently in the fourth decade of life and affects women more than men in a ratio of 1.4:1[12]. The disease affects 1–2% of the population. It is seen clinically as reticular, papular, plaque-like, erosive, atrophic or bullous types. Intraorally, the buccal mucosa, tongue and the gingiva are commonly involved although other sites may be rarely affected.[13,14,15]

OLP is a chronic inflammatory disease in which the immunopathogenesis involves cell-mediated immune dysregulation. OLP is classified as a potentially malignant lesion of the oral mucosa with a malignant transformation rate of 0–6.25%[16]. Molecular and epidemiological studies suggest that HPV infection in the upper respiratory tract may play a role in the pathogenesis of head and neck tumours[17]. The role of HPV in premalignant lesions has also been studied[18,19].

HPVs are epitheliotropic DNA viruses with more than 150 genotypes. HPV classification has been based on the degree of HPV DNA homology. HPV has been detected in various types of oral benign and malignant lesions[20]. The etiology and pathogenesis of OLP has been the focus of much research. This along with the fact that HPV plays a significant role in many oral benign and malignant lesions has suggested a possible role of HPV in OLP. This systematic review describing the role of human papilloma virus 6,16 in the pathogenesis of oral lichen planus, identified 6 studies involving 224 subjects of OLP investigated for presence of HPV-16 and 4 studies with 154 subjects of OLP were investigated for the presence of HPV-6.

Our data suggests that prevalence of HPV-16 in Oral lichen planus is increased over the past few years, while that of HPV-6 has remained consistent. This could also be due to more studies that have investigated HPV-16 than HPV-6 in oral lichen planus.

Jontell M et al[21] in their study examined prevalence of HPV-6,16 in OLP (erosive oral lichen planus) and found 15% HPV-16 and 25% HPV-6 and concluded that HPV may represent one of the risk factors in Oral lichen planus etiology, along with carcinogens like tobacco and

alcohol for oral squamous cell carcinoma in erosive oral lichen planus[21]. Christene ostwald et al (22) compared detection rates of HPV-6/11,16 and 18 between oral squamous cell carcinoma, leukoplakia, cheilitis and oral lichen planus and found only 3.10% HPV-16 and 7.70% HPV-6 positivity and concluded that no association was seen between HPV and oral lichen planus.

Another study by Giuseppina et al[23], assessed the prevalence of HPV DNA in Oral leukoplakia and Oral lichen planus. In their study 2.8% HPV-16 and 1.40% HPV-6 positivity and the authors accomplish that no association seen between human papilloma virus and oral lichen planus. Chetan A.Pol.(24) observed 70% HPV-16 positivity and established significant association between HPV-16 and oral lichen planus. Pratanporn Arirachakaran et al[25], did study on prevalence of HPV-6,16 in Thai patients. They noticed 8.10% HPV-16 and 5.40% HPV-6 positivity and they concluded that no prevalence of HPV-6,16 in Oral lichen planus patients.

Based on this systematic review it was evident that human papilloma virus (HPV)-6,16 does not seem to have role in the pathogenesis of oral lichen planus.

LIMITATIONS OF THE REVIEW:

We acknowledge the potential presence of publication bias might have occurred within this review.

CONCLUSION:

From the studies included in the review, predominance for HPV-6,16 were not seen. Thereby this systematic review concludes that HPV-6,16 doesn't have role in the pathogenesis of Oral lichen planus.

CONFLICT OF INTEREST:

None declared.

REFERENCES:

- McCartan BE, Healy CM. The reported prevalence of oral lichen planus: A review and critique. *J Oral Pathol Med*. 2008;37:447–53. [PubMed]
- Ebrahimi M, Nylander K, van der Waal I. Oral lichen planus and the p53 family: What do we know? *J Oral Pathol Med*. 2011;40:281
- Thornhill MH. Immune mechanisms in oral lichen planus. *Acta Odontologica Scandinavica*. 2001;59(3):174–177. [PubMed]
- Al-Hashimi I, Schifter M, Lockhart PB, et al. Oral lichen planus and oral lichenoid lesions: diagnostic and therapeutic considerations. *Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology*. 2007;103:S25.e1–S25.e12. [PubMed]
- Georgakopoulou EA, Achtari MD, Aftaris M, Foukas PG, Kotsinas A. Oral lichen planus as a preneoplastic inflammatory model. *J Biomed Biotechnol* 2012. 20127596261. 6. Abbas AK, Lichtman AH. *Cellular and Molecular Immunology*. 5th edition. chapter 15. Philadelphia, Pa, USA: WB Saunders; 2004. *Immunity to microbes*; pp. 345–366
- Abbas AK, Lichtman AH. *Cellular and Molecular Immunology*. 5th edition. chapter 15. Philadelphia, Pa, USA: WB Saunders; 2004. *Immunity to microbes*; pp. 345–366
- Scheffner M, Munger K (1991) The state of p53 and retinoblastoma genes in human cervical carcinoma cell lines. *Proc Natl Acad Sci USA* 88:5523–5527
- Werness BA, Levine AJ, Howley PM (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. *Science* 248:76–79.
- Giovannelli L, Campisi G, Colella G et al. Brushing of oral mucosa for diagnosis of HPV infection in patients with potentially malignant and malignant oral lesions. *Mol Diagn Ther* 2006 10: 49–55.
- Christiane Ostwald, Karin Rutsatz, Jens Schweder, Wolfgang Schmid, Karsten Gundlach, Malte Barten 10.1007/s00430-002-0161-y
- Axell T, Rundqvist L. Oral lichen planus - a demographic study. *Community Dent Oral Epidemiol* 1987 151.
- german PB, Savage NW, Walsh LJ, Zhao ZZ, Zhou XJ, Khan A, et al. The pathogenesis of oral lichen planus. *Crit Rev Oral Biol Med*. 2002;13:350–65. [PubMed]
- Bouquot JE, Gorlin RJ. Leukoplakia, lichen planus, and other oral keratoses in 23,616 white Americans over the age of 35 years. *Oral Surg Oral Med Oral Pathol*. 1986;61:373–81. [PubMed]

14. Scully C, Beyli M, Ferreiro MC, Ficarra G, Gill Y, Griffiths M, et al. Update on oral lichen planus: etiopathogenesis and management. *Crit Rev Oral Biol Med.* 1998;9:86–122. [\[PubMed\]](#)
15. Ismail SB, Kumar SK, Zain RB. Oral lichen planus and Lichenoid reactions; Etiopathogenesis, diagnosis, management and malignant transformation. *J Oral Sci.* 2007;49:89–106. [\[PubMed\]](#)
16. Lodi G, Scully C, Carrozzo M et al. Current controversies in oral lichen planus: report of an international consensus meeting- part 1: viral infections and etiopathogenesis. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod* 2005 100: 40–51.
17. Tyring S. Human papillomavirus infections: epidemiology, pathogenesis, and host immune response. *J Am Acad Dermatol* 2000 43: 18–26. 25. Sand L, Jalouli J, Larsson P et al. Human papilloma viruses in oral lesions. *Anticancer Res* 2000 20: 1183–1188.
18. Ostwald C, Rutsatz K, Schweder J et al. Human papillomavirus 6/11,16 and 18 in oral carcinomas and benign oral lesions. *Med Microbiol Immunol* 2003 192: 145–148.
19. Rautava J and Syrjanen S. Human papilloma virus infections in the oralmucosa. *J Am Dent Assoc* 2011 14: 905–914.
20. Giovannelli L, Campisi G, Colella G et al. Brushing of oral mucosa for diagnosis of HPV infection in patients with potentially malignant and malignant oral lesions. *Mol Diagn Ther* 2006 10: 49–55.
- 21.. Jontell M, Watts S, Wallström M, Levin L, Sloberg K. Human papilloma virus in erosive oral lichen planus. *J Oral Pathol Med.* 1990;19:273–7. [\[PubMed\]](#)
- 22.. Christiane Ostwald, Karin Rutsatz, Jens Schweder, Wolfgang Schmidt, Karsten Gundlach, Malte Barten
- 23.. Giuseppina Campisi, DDS, MSc¹ Correspondence email, Lucia Giovannelli, BS, MS, Pietro Aricò, BS, Anna Lama, BS, MS, Chiara Di Liberto, DDS, Pietro Ammatuna, BS, Matteo D'Angelo, MD, DDS² Palermo, Italy³ UNIVERSITY OF PALERMO
- 24.. Chetan A. Pol, Suvarna K. Ghige and Suchitra R. Gosavi
- 25.. Pratanporn Arirachakaran, Jira Chansaengroj, [...], and Yong Poovorawan
- 26.. Mahnaz Sahebjamiee, Lars Sand,¹ Sharare Karimi,² Jalil Momen Biettolahi,³ Fereshteh Jabalameli,³ and Jamshid Jalouli